手机浏览器扫描二维码访问
ThevariationofeccentricitiesandorbitalinclinationsfortheinnerfourplanetsintheinitialandfinalpartoftheintegrationN+1isshowninFig。4。Asexpected,thecharacterofthevariationofplanetaryorbitalelementsdoesnotdiffersignificantlybetweentheinitialandfinalpartofeachintegration,atleastforVenus,EarthandMars。TheelementsofMercury,especiallyitseccentricity,seemtochangetoasignificantextent。Thisispartlybecausetheorbitaltime-scaleoftheplanetistheshortestofalltheplanets,whichleadstoamorerapidorbitalevolutionthanotherplanets;theinnermostplanetmaybenearesttoinstability。ThisresultappearstobeinsomeagreementwithLaskars(1994,1996)expectationsthatlargeandirregularvariationsappearintheeccentricitiesandinclinationsofMercuryonatime-scaleofseveral109yr。However,theeffectofthepossibleinstabilityoftheorbitofMercurymaynotfatallyaffecttheglobalstabilityofthewholeplanetarysystemowingtothesmallmassofMercury。Wewillmentionbrieflythelong-termorbitalevolutionofMercurylaterinSection4usinglow-passfilteredorbitalelements。
Theorbitalmotionoftheouterfiveplanetsseemsrigorouslystableandquiteregularoverthistime-span(seealsoSection5)。
3。2Time–frequencymaps
Althoughtheplanetarymotionexhibitsverylong-termstabilitydefinedasthenon-existenceofcloseencounterevents,thechaoticnatureofplanetarydynamicscanchangetheoscillatoryperiodandamplitudeofplanetaryorbitalmotiongraduallyoversuchlongtime-spans。Evensuchslightfluctuationsoforbitalvariationinthefrequencydomain,particularlyinthecaseofEarth,canpotentiallyhaveasignificanteffectonitssurfaceclimatesystemthroughsolarinsolationvariation(cf。Berger1988)。
Togiveanoverviewofthelong-termchangeinperiodicityinplanetaryorbitalmotion,weperformedmanyfastFouriertransformations(FFTs)alongthetimeaxis,andsuperposedtheresultingperiodgramstodrawtwo-dimensionaltime–frequencymaps。Thespecificapproachtodrawingthesetime–frequencymapsinthispaperisverysimple–muchsimplerthanthewaveletanalysisorLaskars(1990,1993)frequencyanalysis。
Dividethelow-passfilteredorbitaldataintomanyfragmentsofthesamelength。Thelengthofeachdatasegmentshouldbeamultipleof2inordertoapplytheFFT。
Eachfragmentofthedatahasalargeoverlappingpart:forexample,whentheithdatabeginsfromt=tiandendsatt=ti+T,thenextdatasegmentrangesfromti+δT≤ti+δT+T,whereδT?T。WecontinuethisdivisionuntilwereachacertainnumberNbywhichtn+Treachesthetotalintegrationlength。
WeapplyanFFTtoeachofthedatafragments,andobtainnfrequencydiagrams。
Ineachfrequencydiagramobtainedabove,thestrengthofperiodicitycanbereplacedbyagrey-scale(orcolour)chart。
Weperformthereplacement,andconnectallthegrey-scale(orcolour)chartsintoonegraphforeachintegration。Thehorizontalaxisofthesenewgraphsshouldbethetime,i。e。thestartingtimesofeachfragmentofdata(ti,wherei=1,…,n)。Theverticalaxisrepresentstheperiod(orfrequency)oftheoscillationoforbitalelements。
WehaveadoptedanFFTbecauseofitsoverwhelmingspeed,sincetheamountofnumericaldatatobedecomposedintofrequencycomponentsisterriblyhuge(severaltensofGbytes)。
Atypicalexampleofthetime–frequencymapcreatedbytheaboveproceduresisshowninagrey-scalediagramasFig。5,whichshowsthevariationofperiodicityintheeccentricityandinclinationofEarthinN+2integration。InFig。5,thedarkareashowsthatatthetimeindicatedbythevalueontheabscissa,theperiodicityindicatedbytheordinateisstrongerthaninthelighterareaaroundit。WecanrecognizefromthismapthattheperiodicityoftheeccentricityandinclinationofEarthonlychangesslightlyovertheentireperiodcoveredbytheN+2integration。Thisnearlyregulartrendisqualitativelythesameinotherintegrationsandforotherplanets,althoughtypicalfrequenciesdifferplanetbyplanetandelementbyelement。
4。2Long-termexchangeoforbitalenergyandangularmomentum
Wecalculateverylong-periodicvariationandexchangeofplanetaryorbitalenergyandangularmomentumusingfilteredDelaunayelementsL,G,H。GandHareequivalenttotheplanetaryorbitalangularmomentumanditsverticalcomponentperunitmass。LisrelatedtotheplanetaryorbitalenergyEperunitmassasE=?μ22L2。Ifthesystemiscompletelylinear,theorbitalenergyandtheangularmomentumineachfrequencybinmustbeconstant。Non-linearityintheplanetarysystemcancauseanexchangeofenergyandangularmomentuminthefrequencydomain。Theamplitudeofthelowest-frequencyoscillationshouldincreaseifthesystemisunstableandbreaksdowngradually。However,suchasymptomofinstabilityisnotprominentinourlong-termintegrations。
InFig。7,thetotalorbitalenergyandangularmomentumofthefourinnerplanetsandallnineplanetsareshownforintegrationN+2。Theupperthreepanelsshowthelong-periodicvariationoftotalenergy(denotedasE-E0),totalangularmomentum(G-G0),andtheverticalcomponent(H-H0)oftheinnerfourplanetscalculatedfromthelow-passfilteredDelaunayelements。E0,G0,H0denotetheinitialvaluesofeachquantity。Theabsolutedifferencefromtheinitialvaluesisplottedinthepanels。ThelowerthreepanelsineachfigureshowE-E0,G-G0andH-H0ofthetotalofnineplanets。Thefluctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthemassivejovianplanets。
Comparingthevariationsofenergyandangularmomentumoftheinnerfourplanetsandallnineplanets,itisapparentthattheamplitudesofthoseoftheinnerplanetsaremuchsmallerthanthoseofallnineplanets:theamplitudesoftheouterfiveplanetsaremuchlargerthanthoseoftheinnerplanets。Thisdoesnotmeanthattheinnerterrestrialplanetarysubsystemismorestablethantheouterone:thisissimplyaresultoftherelativesmallnessofthemassesofthefourterrestrialplanetscomparedwiththoseoftheouterjovianplanets。Anotherthingwenoticeisthattheinnerplanetarysubsystemmaybecomeunstablemorerapidlythantheouteronebecauseofitsshorterorbitaltime-scales。Thiscanbeseeninthepanelsdenotedasinner4inFig。7wherethelonger-periodicandirregularoscillationsaremoreapparentthaninthepanelsdenotedastotal9。Actually,thefluctuationsintheinner4panelsaretoalargeextentasaresultoftheorbitalvariationoftheMercury。However,wecannotneglectthecontributionfromotherterrestrialplanets,aswewillseeinsubsequentsections。
4。4Long-termcouplingofseveralneighbouringplanetpairs
Letusseesomeindividualvariationsofplanetaryorbitalenergyandangularmomentumexpressedbythelow-passfilteredDelaunayelements。Figs10and11showlong-termevolutionoftheorbitalenergyofeachplanetandtheangularmomentuminN+1andN?2integrations。Wenoticethatsomeplanetsformapparentpairsintermsoforbitalenergyandangularmomentumexchange。Inparticular,VenusandEarthmakeatypicalpair。Inthefigures,theyshownegativecorrelationsinexchangeofenergyandpositivecorrelationsinexchangeofangularmomentum。Thenegativecorrelationinexchangeoforbitalenergymeansthatthetwoplanetsformacloseddynamicalsystemintermsoftheorbitalenergy。Thepositivecorrelationinexchangeofangularmomentummeansthatthetwoplanetsaresimultaneouslyundercertainlong-termperturbations。CandidatesforperturbersareJupiterandSaturn。AlsoinFig。11,wecanseethatMarsshowsapositivecorrelationintheangularmomentumvariationtotheVenus–Earthsystem。MercuryexhibitscertainnegativecorrelationsintheangularmomentumversustheVenus–Earthsystem,whichseemstobeareactioncausedbytheconservationofangularmomentumintheterrestrialplanetarysubsystem。
ItisnotclearatthemomentwhytheVenus–Earthpairexhibitsanegativecorrelationinenergyexchangeandapositivecorrelationinangularmomentumexchange。Wemaypossiblyexplainthisthroughobservingthegeneralfactthattherearenoseculartermsinplanetarysemimajoraxesuptosecond-orderperturbationtheories(cf。Brouwer&Clemence1961;Boccaletti&Pucacco1998)。Thismeansthattheplanetaryorbitalenergy(whichisdirectlyrelatedtothesemimajoraxisa)mightbemuchlessaffectedbyperturbingplanetsthanistheangularmomentumexchange(whichrelatestoe)。Hence,theeccentricitiesofVenusandEarthcanbedisturbedeasilybyJupiterandSaturn,whichresultsinapositivecorrelationintheangularmomentumexchange。Ontheotherhand,thesemimajoraxesofVenusandEartharelesslikelytobedisturbedbythejovianplanets。ThustheenergyexchangemaybelimitedonlywithintheVenus–Earthpair,whichresultsinanegativecorrelationintheexchangeoforbitalenergyinthepair。
Asfortheouterjovianplanetarysubsystem,Jupiter–SaturnandUranus–Neptuneseemtomakedynamicalpairs。However,thestrengthoftheircouplingisnotasstrongcomparedwiththatoftheVenus–Earthpair。
5±5×1010-yrintegrationsofouterplanetaryorbits
Sincethejovianplanetarymassesaremuchlargerthantheterrestrialplanetarymasses,wetreatthejovianplanetarysystemasanindependentplanetarysystemintermsofthestudyofitsdynamicalstability。Hence,weaddedacoupleoftrialintegrationsthatspan±5×1010yr,includingonlytheouterfiveplanets(thefourjovianplanetsplusPluto)。Theresultsexhibittherigorousstabilityoftheouterplanetarysystemoverthislongtime-span。Orbitalconfigurations(Fig。12),andvariationofeccentricitiesandinclinations(Fig。13)showthisverylong-termstabilityoftheouterfiveplanetsinboththetimeandthefrequencydomains。Althoughwedonotshowmapshere,thetypicalfrequencyoftheorbitaloscillationofPlutoandtheotherouterplanetsisalmostconstantduringtheseverylong-termintegrationperiods,whichisdemonstratedinthetime–frequencymapsonourwebpage。
Inthesetwointegrations,therelativenumericalerrorinthetotalenergywas~10?6andthatofthetotalangularmomentumwas~10?10。
5。1ResonancesintheNeptune–Plutosystem
Kinoshita&Nakai(1996)integratedtheouterfiveplanetaryorbitsover±5。5×109yr。TheyfoundthatfourmajorresonancesbetweenNeptuneandPlutoaremaintainedduringthewholeintegrationperiod,andthattheresonancesmaybethemaincausesofthestabilityoftheorbitofPluto。Themajorfourresonancesfoundinpreviousresearchareasfollows。Inthefollowingdescription,λdenotesthemeanlongitude,Ωisthelongitudeoftheascendingnodeand?isthelongitudeofperihelion。SubscriptsPandNdenotePlutoandNeptune。
MeanmotionresonancebetweenNeptuneandPluto(3:2)。Thecriticalargumentθ1=3λP?2λN??Plibratesaround180°withanamplitudeofabout80°andalibrationperiodofabout2×104yr。
TheargumentofperihelionofPlutoωP=θ2=?P?ΩPlibratesaround90°withaperiodofabout3。8×106yr。ThedominantperiodicvariationsoftheeccentricityandinclinationofPlutoaresynchronizedwiththelibrationofitsargumentofperihelion。ThisisanticipatedinthesecularperturbationtheoryconstructedbyKozai(1962)。
ThelongitudeofthenodeofPlutoreferredtothelongitudeofthenodeofNeptune,θ3=ΩP?ΩN,circulatesandtheperiodofthiscirculationisequaltotheperiodofθ2libration。Whenθ3becomeszero,i。e。thelongitudesofascendingnodesofNeptuneandPlutooverlap,theinclinationofPlutobecomesmaximum,theeccentricitybecomesminimumandtheargumentofperihelionbecomes90°。Whenθ3becomes180°,theinclinationofPlutobecomesminimum,theeccentricitybecomesmaximumandtheargumentofperihelionbecomes90°again。Williams&Benson(1971)anticipatedthistypeofresonance,laterconfirmedbyMilani,Nobili&Carpino(1989)。
Anargumentθ4=?P??N+3(ΩP?ΩN)libratesaround180°withalongperiod,~5。7×108yr。
Inournumericalintegrations,theresonances(i)–(iii)arewellmaintained,andvariationofthecriticalargumentsθ1,θ2,θ3remainsimilarduringthewholeintegrationperiod(Figs14–16)。However,thefourthresonance(iv)appearstobedifferent:thecriticalargumentθ4alternateslibrationandcirculationovera1010-yrtime-scale(Fig。17)。ThisisaninterestingfactthatKinoshita&Nakais(1995,1996)shorterintegrationswerenotabletodisclose。
6Discussion
Whatkindofdynamicalmechanismmaintainsthislong-termstabilityoftheplanetarysystem?Wecanimmediatelythinkoftwomajorfeaturesthatmayberesponsibleforthelong-termstability。First,thereseemtobenosignificantlower-orderresonances(meanmotionandsecular)betweenanypairamongthenineplanets。JupiterandSaturnareclosetoa5:2meanmotionresonance(thefamous‘greatinequality’),butnotjustintheresonancezone。Higher-orderresonancesmaycausethechaoticnatureoftheplanetarydynamicalmotion,buttheyarenotsostrongastodestroythestableplanetarymotionwithinthelifetimeoftherealSolarsystem。Thesecondfeature,whichwethinkismoreimportantforthelong-termstabilityofourplanetarysystem,isthedifferenceindynamicaldistancebetweenterrestrialandjovianplanetarysubsystems(Ito&Tanikawa1999,2001)。WhenwemeasureplanetaryseparationsbythemutualHillradii(R_),separationsamongterrestrialplanetsaregreaterthan26RH,whereasthoseamongjovianplanetsarelessthan14RH。Thisdifferenceisdirectlyrelatedtothedifferencebetweendynamicalfeaturesofterrestrialandjovianplanets。Terrestrialplanetshavesmallermasses,shorterorbitalperiodsandwiderdynamicalseparation。Theyarestronglyperturbedbyjovianplanetsthathavelargermasses,longerorbitalperiodsandnarrowerdynamicalseparation。Jovianplanetsarenotperturbedbyanyothermassivebodies。
Thepresentterrestrialplanetarysystemisstillbeingdisturbedbythemassivejovianplanets。However,thewideseparationandmutualinteractionamongtheterrestrialplanetsrendersthedisturbanceineffective;thedegreeofdisturbancebyjovianplanetsisO(eJ)(orderofmagnitudeoftheeccentricityofJupiter),sincethedisturbancecausedbyjovianplanetsisaforcedoscillationhavinganamplitudeofO(eJ)。Heighteningofeccentricity,forexampleO(eJ)~0。05,isfarfromsufficienttoprovokeinstabilityintheterrestrialplanetshavingsuchawideseparationas26RH。Thusweassumethatthepresentwidedynamicalseparationamongterrestrialplanets(>26RH)isprobablyoneofthemostsignificantconditionsformaintainingthestabilityoftheplanetarysystemovera109-yrtime-span。Ourdetailedanalysisoftherelationshipbetweendynamicaldistancebetweenplanetsandtheinstabilitytime-scaleofSolarsystemplanetarymotionisnowon-going。
AlthoughournumericalintegrationsspanthelifetimeoftheSolarsystem,thenumberofintegrationsisfarfromsufficienttofilltheinitialphasespace。Itisnecessarytoperformmoreandmorenumericalintegrationstoconfirmandexamineindetailthelong-termstabilityofourplanetarydynamics。
——以上文段引自Ito,T。&Tanikawa,K。Long-termintegrationsandstabilityofplanetaryorbitsinourSolarSystem。Mon。Not。R。Astron。Soc。336,483–500(2002)
这只是作者君参考的一篇文章,关于太阳系的稳定性。
还有其他论文,不过也都是英文的,相关课题的中文文献很少,那些论文下载一篇要九美元(《Nature》真是暴利),作者君写这篇文章的时候已经回家,不在检测中心,所以没有数据库的使用权,下不起,就不贴上来了。
别妄想逃离我,除非我尸骨无存。我是你一个人哒墨临琛掌握京城命脉,凶残冷血,却对病秧子安初眠蚀骨宠爱。传闻这病秧子骨瘦嶙峋,奇丑无比,结果,她惊艳亮相,全民皆痴。安初眠在外腥风血雨搞事情,唯独对墨临琛成了黏人小奶包。当着众人面,墨临琛抱着小奶包,又哄又宠,我老婆身子娇弱,三步一喘,你们都得让着她。养生系统续命,无数神级buff加持,安初眠一搞事就轰动全球。天后马甲被扒,墨临琛看着怀中的安初眠,小奶包,嗯?我摊牌了,除了是你的小奶包外,马甲也遍布全球爱慕者蜂拥而至,豪掷千金。墨爷,你家夫人翻天了!墨临琛磨刀霍霍,敢,她是我的私有物,谁敢多看一眼死!次日,安初眠狐疑的发现,对她众星捧月的爱慕者们,一见到她就闻风丧胆了。...
...
一朝穿越成柔弱小花,还多个拖油瓶,她颤巍巍抱上前任叔叔的大腿。望天大陆第一病娇冥王。从此晋升大佬团宠,人生开挂。顶级医师姿态谦恭医术还得凤小姐多多指教。权势滔天的暗夜阁主笑容殷切又来了一批宝物,您看看喜欢吗?众多世家争相哭诉您还收徒吗?徒孙也行!凤九熙冥王恣意而慵懒本王不是让王妃躺赢,怎么起身了?凤九熙收拾细软就准备带娃跑路体虚无能?骗鬼呢!崽崽娘亲,别急着休夫,父王的偌大家业可以先继承下。...
那年,大唐的军队向西走得很远...
一款名为‘大千’的游戏降临蓝星,使得所有人类都成为‘玩家’。经玩家探索,发现游戏内含有无数位面世界,里面神魔强者如云,并且所有世界都是真实存在张封,本...
隐婚总裁花式宠妻免费全文阅读,小说主角。五年前,她被亲生母亲设计,失身于陌生男人。三年前,她为了钱,嫁给了姜氏集团的姜总,两人人前恩爱,不过是契约合作而已。当她想要离开他的时候。他却抓着她不放,没履行夫妻义务就想跑?没门!最后她才发现,原来他就是孩子的亲生父亲!...