三藏中文网

手机浏览器扫描二维码访问

对火星轨道变化问题的最后解释(第1页)

作者君在作品相关中其实已经解释过这个问题。

不过仍然有人质疑。

那么作者君在此列出相关参考文献中的一篇开源论文。

以下是文章内容:

Long-termintegrationsandstabilityofplanetaryorbitsinourSolarsystem

Abstract

Wepresenttheresultsofverylong-termnumericalintegrationsofplanetaryorbitalmotionsover109-yrtime-spansincludingallnineplanets。Aquickinspectionofournumericaldatashowsthattheplanetarymotion,atleastinoursimpledynamicalmodel,seemstobequitestableevenoverthisverylongtime-span。Acloserlookatthelowest-frequencyoscillationsusingalow-passfiltershowsusthepotentiallydiffusivecharacterofterrestrialplanetarymotion,especiallythatofMercury。ThebehaviouroftheeccentricityofMercuryinourintegrationsisqualitativelysimilartotheresultsfromJacquesLaskarssecularperturbationtheory(e。g。emax~0。35over~±4Gyr)。However,therearenoapparentsecularincreasesofeccentricityorinclinationinanyorbitalelementsoftheplanets,whichmayberevealedbystilllonger-termnumericalintegrations。Wehavealsoperformedacoupleoftrialintegrationsincludingmotionsoftheouterfiveplanetsoverthedurationof±5×1010yr。TheresultindicatesthatthethreemajorresonancesintheNeptune–Plutosystemhavebeenmaintainedoverthe1011-yrtime-span。

1Introduction

1。1Definitionoftheproblem

ThequestionofthestabilityofourSolarsystemhasbeendebatedoverseveralhundredyears,sincetheeraofNewton。Theproblemhasattractedmanyfamousmathematiciansovertheyearsandhasplayedacentralroleinthedevelopmentofnon-lineardynamicsandchaostheory。However,wedonotyethaveadefiniteanswertothequestionofwhetherourSolarsystemisstableornot。Thisispartlyaresultofthefactthatthedefinitionoftheterm‘stability’isvaguewhenitisusedinrelationtotheproblemofplanetarymotionintheSolarsystem。Actuallyitisnoteasytogiveaclear,rigorousandphysicallymeaningfuldefinitionofthestabilityofourSolarsystem。

Amongmanydefinitionsofstability,hereweadopttheHilldefinition(Gladman1993):actuallythisisnotadefinitionofstability,butofinstability。Wedefineasystemasbecomingunstablewhenacloseencounteroccurssomewhereinthesystem,startingfromacertaininitialconfiguration(Chambers,Wetherill&Boss1996;Ito&Tanikawa1999)。AsystemisdefinedasexperiencingacloseencounterwhentwobodiesapproachoneanotherwithinanareaofthelargerHillradius。Otherwisethesystemisdefinedasbeingstable。HenceforwardwestatethatourplanetarysystemisdynamicallystableifnocloseencounterhappensduringtheageofourSolarsystem,about±5Gyr。Incidentally,thisdefinitionmaybereplacedbyoneinwhichanoccurrenceofanyorbitalcrossingbetweeneitherofapairofplanetstakesplace。Thisisbecauseweknowfromexperiencethatanorbitalcrossingisverylikelytoleadtoacloseencounterinplanetaryandprotoplanetarysystems(Yoshinaga,Kokubo&Makino1999)。OfcoursethisstatementcannotbesimplyappliedtosystemswithstableorbitalresonancessuchastheNeptune–Plutosystem。

1。2Previousstudiesandaimsofthisresearch

Inadditiontothevaguenessoftheconceptofstability,theplanetsinourSolarsystemshowacharactertypicalofdynamicalchaos(Sussman&Wisdom1988,1992)。Thecauseofthischaoticbehaviourisnowpartlyunderstoodasbeingaresultofresonanceoverlapping(Murray&Holman1999;Lecar,Franklin&Holman2001)。However,itwouldrequireintegratingoveranensembleofplanetarysystemsincludingallnineplanetsforaperiodcoveringseveral10Gyrtothoroughlyunderstandthelong-termevolutionofplanetaryorbits,sincechaoticdynamicalsystemsarecharacterizedbytheirstrongdependenceoninitialconditions。

Fromthatpointofview,manyofthepreviouslong-termnumericalintegrationsincludedonlytheouterfiveplanets(Sussman&Wisdom1988;Kinoshita&Nakai1996)。Thisisbecausetheorbitalperiodsoftheouterplanetsaresomuchlongerthanthoseoftheinnerfourplanetsthatitismucheasiertofollowthesystemforagivenintegrationperiod。Atpresent,thelongestnumericalintegrationspublishedinjournalsarethoseofDuncan&Lissauer(1998)。Althoughtheirmaintargetwastheeffectofpost-main-sequencesolarmasslossonthestabilityofplanetaryorbits,theyperformedmanyintegrationscoveringupto~1011yroftheorbitalmotionsofthefourjovianplanets。TheinitialorbitalelementsandmassesofplanetsarethesameasthoseofourSolarsysteminDuncan&Lissauerspaper,buttheydecreasethemassoftheSungraduallyintheirnumericalexperiments。Thisisbecausetheyconsidertheeffectofpost-main-sequencesolarmasslossinthepaper。Consequently,theyfoundthatthecrossingtime-scaleofplanetaryorbits,whichcanbeatypicalindicatoroftheinstabilitytime-scale,isquitesensitivetotherateofmassdecreaseoftheSun。WhenthemassoftheSunisclosetoitspresentvalue,thejovianplanetsremainstableover1010yr,orperhapslonger。Duncan&Lissaueralsoperformedfoursimilarexperimentsontheorbitalmotionofsevenplanets(VenustoNeptune),whichcoveraspanof~109yr。Theirexperimentsonthesevenplanetsarenotyetcomprehensive,butitseemsthattheterrestrialplanetsalsoremainstableduringtheintegrationperiod,maintainingalmostregularoscillations。

Ontheotherhand,inhisaccuratesemi-analyticalsecularperturbationtheory(Laskar1988),Laskarfindsthatlargeandirregularvariationscanappearintheeccentricitiesandinclinationsoftheterrestrialplanets,especiallyofMercuryandMarsonatime-scaleofseveral109yr(Laskar1996)。TheresultsofLaskarssecularperturbationtheoryshouldbeconfirmedandinvestigatedbyfullynumericalintegrations。

Inthispaperwepresentpreliminaryresultsofsixlong-termnumericalintegrationsonallnineplanetaryorbits,coveringaspanofseveral109yr,andoftwootherintegrationscoveringaspanof±5×1010yr。Thetotalelapsedtimeforallintegrationsismorethan5yr,usingseveraldedicatedPCsandworkstations。Oneofthefundamentalconclusionsofourlong-termintegrationsisthatSolarsystemplanetarymotionseemstobestableintermsoftheHillstabilitymentionedabove,atleastoveratime-spanof±4Gyr。Actually,inournumericalintegrationsthesystemwasfarmorestablethanwhatisdefinedbytheHillstabilitycriterion:notonlydidnocloseencounterhappenduringtheintegrationperiod,butalsoalltheplanetaryorbitalelementshavebeenconfinedinanarrowregionbothintimeandfrequencydomain,thoughplanetarymotionsarestochastic。Sincethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-termnumericalintegrations,weshowtypicalexamplefiguresasevidenceoftheverylong-termstabilityofSolarsystemplanetarymotion。Forreaderswhohavemorespecificanddeeperinterestsinournumericalresults,wehavepreparedawebpage(access),whereweshowraworbitalelements,theirlow-passfilteredresults,variationofDelaunayelementsandangularmomentumdeficit,andresultsofoursimpletime–frequencyanalysisonallofourintegrations。

InSection2webrieflyexplainourdynamicalmodel,numericalmethodandinitialconditionsusedinourintegrations。Section3isdevotedtoadescriptionofthequickresultsofthenumericalintegrations。Verylong-termstabilityofSolarsystemplanetarymotionisapparentbothinplanetarypositionsandorbitalelements。Aroughestimationofnumericalerrorsisalsogiven。Section4goesontoadiscussionofthelongest-termvariationofplanetaryorbitsusingalow-passfilterandincludesadiscussionofangularmomentumdeficit。InSection5,wepresentasetofnumericalintegrationsfortheouterfiveplanetsthatspans±5×1010yr。InSection6wealsodiscussthelong-termstabilityoftheplanetarymotionanditspossiblecause。

2Descriptionofthenumericalintegrations

(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)

2。3Numericalmethod

Weutilizeasecond-orderWisdom–Holmansymplecticmapasourmainintegrationmethod(Wisdom&Holman1991;Kinoshita,Yoshida&Nakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(Saha&Tremaine1992,1994)。

Thestepsizeforthenumericalintegrationsis8dthroughoutallintegrationsofthenineplanets(N±1,2,3),whichisabout111oftheorbitalperiodoftheinnermostplanet(Mercury)。Asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrationofallnineplanetsinSussman&Wisdom(1988,7。2d)andSaha&Tremaine(1994,22532d)。Weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inordertoreducetheaccumulationofround-offerrorinthecomputationprocesses。Inrelationtothis,Wisdom&Holman(1991)performednumericalintegrationsoftheouterfiveplanetaryorbitsusingthesymplecticmapwithastepsizeof400d,110。83oftheorbitalperiodofJupiter。Theirresultseemstobeaccurateenough,whichpartlyjustifiesourmethodofdeterminingthestepsize。However,sincetheeccentricityofJupiter(~0。05)ismuchsmallerthanthatofMercury(~0。2),weneedsomecarewhenwecomparetheseintegrationssimplyintermsofstepsizes。

Intheintegrationoftheouterfiveplanets(F±),wefixedthestepsizeat400d。

WeadoptGaussfandgfunctionsinthesymplecticmaptogetherwiththethird-orderHalleymethod(Danby1992)asasolverforKeplerequations。ThenumberofmaximumiterationswesetinHalleysmethodis15,buttheyneverreachedthemaximuminanyofourintegrations。

Theintervalofthedataoutputis200000d(~547yr)forthecalculationsofallnineplanets(N±1,2,3),andabout8000000d(~21903yr)fortheintegrationoftheouterfiveplanets(F±)。

Althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwehadcompletedallthecalculations。SeeSection4。1formoredetail。

2。4Errorestimation

2。4。1Relativeerrorsintotalenergyandangularmomentum

Accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-termnumericalintegrationsseemtohavebeenperformedwithverysmallerrors。Theaveragedrelativeerrorsoftotalenergy(~10?9)andoftotalangularmomentum(~10?11)haveremainednearlyconstantthroughouttheintegrationperiod(Fig。1)。Thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeormore。

RelativenumericalerrorofthetotalangularmomentumδAA0andthetotalenergyδEE0inournumericalintegrationsN±1,2,3,whereδEandδAaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,andE0andA0aretheirinitialvalues。ThehorizontalunitisGyr。

Notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericalalgorithms。IntheupperpanelofFig。1,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-εprecision。

2。4。2Errorinplanetarylongitudes

SincethesymplecticmapspreservetotalenergyandtotalangularmomentumofN-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericalintegrations,especiallyasameasureofthepositionalerrorofplanets,i。e。theerrorinplanetarylongitudes。Toestimatethenumericalerrorintheplanetarylongitudes,weperformedthefollowingprocedures。Wecomparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmuchshorterperiodsbutwithmuchhigheraccuracythanthemainintegrations。Forthispurpose,weperformedamuchmoreaccurateintegrationwithastepsizeof0。125d(164ofthemainintegrations)spanning3×105yr,startingwiththesameinitialconditionsasintheN?1integration。Weconsiderthatthistestintegrationprovidesuswitha‘pseudo-true’solutionofplanetaryorbitalevolution。Next,wecomparethetestintegrationwiththemainintegration,N?1。Fortheperiodof3×105yr,weseeadifferenceinmeananomaliesoftheEarthbetweenthetwointegrationsof~0。52°(inthecaseoftheN?1integration)。Thisdifferencecanbeextrapolatedtothevalue~8700°,about25rotationsofEarthafter5Gyr,sincetheerroroflongitudesincreaseslinearlywithtimeinthesymplecticmap。Similarly,thelongitudeerrorofPlutocanbeestimatedas~12°。ThisvalueforPlutoismuchbetterthantheresultinKinoshita&Nakai(1996)wherethedifferenceisestimatedas~60°。

3Numericalresults–I。Glanceattherawdata

Inthissectionwebrieflyreviewthelong-termstabilityofplanetaryorbitalmotionthroughsomesnapshotsofrawnumericaldata。Theorbitalmotionofplanetsindicateslong-termstabilityinallofournumericalintegrations:noorbitalcrossingsnorcloseencountersbetweenanypairofplanetstookplace。

3。1Generaldescriptionofthestabilityofplanetaryorbits

First,webrieflylookatthegeneralcharacterofthelong-termstabilityofplanetaryorbits。Ourinterestherefocusesparticularlyontheinnerfourterrestrialplanetsforwhichtheorbitaltime-scalesaremuchshorterthanthoseoftheouterfiveplanets。AswecanseeclearlyfromtheplanarorbitalconfigurationsshowninFigs2and3,orbitalpositionsoftheterrestrialplanetsdifferlittlebetweentheinitialandfinalpartofeachnumericalintegration,whichspansseveralGyr。Thesolidlinesdenotingthepresentorbitsoftheplanetsliealmostwithintheswarmofdotseveninthefinalpartofintegrations(b)and(d)。Thisindicatesthatthroughouttheentireintegrationperiodthealmostregularvariationsofplanetaryorbitalmotionremainnearlythesameastheyareatpresent。

Verticalviewofthefourinnerplanetaryorbits(fromthez-axisdirection)attheinitialandfinalpartsoftheintegrationsN±1。Theaxesunitsareau。Thexy-planeissettotheinvariantplaneofSolarsystemtotalangularmomentum。(a)TheinitialpartofN+1(t=0to0。0547×109yr)。(b)ThefinalpartofN+1(t=4。9339×108to4。9886×109yr)。(c)TheinitialpartofN?1(t=0to?0。0547×109yr)。(d)ThefinalpartofN?1(t=?3。9180×109to?3。9727×109yr)。Ineachpanel,atotalof23684pointsareplottedwithanintervalofabout2190yrover5。47×107yr。Solidlinesineachpaneldenotethepresentorbitsofthefourterrestrialplanets(takenfromDE245)。

热门小说推荐
穿成偏执大佬的粘人精

穿成偏执大佬的粘人精

别妄想逃离我,除非我尸骨无存。我是你一个人哒墨临琛掌握京城命脉,凶残冷血,却对病秧子安初眠蚀骨宠爱。传闻这病秧子骨瘦嶙峋,奇丑无比,结果,她惊艳亮相,全民皆痴。安初眠在外腥风血雨搞事情,唯独对墨临琛成了黏人小奶包。当着众人面,墨临琛抱着小奶包,又哄又宠,我老婆身子娇弱,三步一喘,你们都得让着她。养生系统续命,无数神级buff加持,安初眠一搞事就轰动全球。天后马甲被扒,墨临琛看着怀中的安初眠,小奶包,嗯?我摊牌了,除了是你的小奶包外,马甲也遍布全球爱慕者蜂拥而至,豪掷千金。墨爷,你家夫人翻天了!墨临琛磨刀霍霍,敢,她是我的私有物,谁敢多看一眼死!次日,安初眠狐疑的发现,对她众星捧月的爱慕者们,一见到她就闻风丧胆了。...

穿成病娇王爷崽崽的亲妈

穿成病娇王爷崽崽的亲妈

一朝穿越成柔弱小花,还多个拖油瓶,她颤巍巍抱上前任叔叔的大腿。望天大陆第一病娇冥王。从此晋升大佬团宠,人生开挂。顶级医师姿态谦恭医术还得凤小姐多多指教。权势滔天的暗夜阁主笑容殷切又来了一批宝物,您看看喜欢吗?众多世家争相哭诉您还收徒吗?徒孙也行!凤九熙冥王恣意而慵懒本王不是让王妃躺赢,怎么起身了?凤九熙收拾细软就准备带娃跑路体虚无能?骗鬼呢!崽崽娘亲,别急着休夫,父王的偌大家业可以先继承下。...

唐土万里

唐土万里

那年,大唐的军队向西走得很远...

提前登录诸天游戏

提前登录诸天游戏

一款名为‘大千’的游戏降临蓝星,使得所有人类都成为‘玩家’。经玩家探索,发现游戏内含有无数位面世界,里面神魔强者如云,并且所有世界都是真实存在张封,本...

桑云岚姜司朗

桑云岚姜司朗

隐婚总裁花式宠妻免费全文阅读,小说主角。五年前,她被亲生母亲设计,失身于陌生男人。三年前,她为了钱,嫁给了姜氏集团的姜总,两人人前恩爱,不过是契约合作而已。当她想要离开他的时候。他却抓着她不放,没履行夫妻义务就想跑?没门!最后她才发现,原来他就是孩子的亲生父亲!...