三藏中文网

手机浏览器扫描二维码访问

对火星轨道变化问题的最后解释(第2页)

ThevariationofeccentricitiesandorbitalinclinationsfortheinnerfourplanetsintheinitialandfinalpartoftheintegrationN+1isshowninFig。4。Asexpected,thecharacterofthevariationofplanetaryorbitalelementsdoesnotdiffersignificantlybetweentheinitialandfinalpartofeachintegration,atleastforVenus,EarthandMars。TheelementsofMercury,especiallyitseccentricity,seemtochangetoasignificantextent。Thisispartlybecausetheorbitaltime-scaleoftheplanetistheshortestofalltheplanets,whichleadstoamorerapidorbitalevolutionthanotherplanets;theinnermostplanetmaybenearesttoinstability。ThisresultappearstobeinsomeagreementwithLaskars(1994,1996)expectationsthatlargeandirregularvariationsappearintheeccentricitiesandinclinationsofMercuryonatime-scaleofseveral109yr。However,theeffectofthepossibleinstabilityoftheorbitofMercurymaynotfatallyaffecttheglobalstabilityofthewholeplanetarysystemowingtothesmallmassofMercury。Wewillmentionbrieflythelong-termorbitalevolutionofMercurylaterinSection4usinglow-passfilteredorbitalelements。

Theorbitalmotionoftheouterfiveplanetsseemsrigorouslystableandquiteregularoverthistime-span(seealsoSection5)。

3。2Time–frequencymaps

Althoughtheplanetarymotionexhibitsverylong-termstabilitydefinedasthenon-existenceofcloseencounterevents,thechaoticnatureofplanetarydynamicscanchangetheoscillatoryperiodandamplitudeofplanetaryorbitalmotiongraduallyoversuchlongtime-spans。Evensuchslightfluctuationsoforbitalvariationinthefrequencydomain,particularlyinthecaseofEarth,canpotentiallyhaveasignificanteffectonitssurfaceclimatesystemthroughsolarinsolationvariation(cf。Berger1988)。

Togiveanoverviewofthelong-termchangeinperiodicityinplanetaryorbitalmotion,weperformedmanyfastFouriertransformations(FFTs)alongthetimeaxis,andsuperposedtheresultingperiodgramstodrawtwo-dimensionaltime–frequencymaps。Thespecificapproachtodrawingthesetime–frequencymapsinthispaperisverysimple–muchsimplerthanthewaveletanalysisorLaskars(1990,1993)frequencyanalysis。

Dividethelow-passfilteredorbitaldataintomanyfragmentsofthesamelength。Thelengthofeachdatasegmentshouldbeamultipleof2inordertoapplytheFFT。

Eachfragmentofthedatahasalargeoverlappingpart:forexample,whentheithdatabeginsfromt=tiandendsatt=ti+T,thenextdatasegmentrangesfromti+δT≤ti+δT+T,whereδT?T。WecontinuethisdivisionuntilwereachacertainnumberNbywhichtn+Treachesthetotalintegrationlength。

WeapplyanFFTtoeachofthedatafragments,andobtainnfrequencydiagrams。

Ineachfrequencydiagramobtainedabove,thestrengthofperiodicitycanbereplacedbyagrey-scale(orcolour)chart。

Weperformthereplacement,andconnectallthegrey-scale(orcolour)chartsintoonegraphforeachintegration。Thehorizontalaxisofthesenewgraphsshouldbethetime,i。e。thestartingtimesofeachfragmentofdata(ti,wherei=1,…,n)。Theverticalaxisrepresentstheperiod(orfrequency)oftheoscillationoforbitalelements。

WehaveadoptedanFFTbecauseofitsoverwhelmingspeed,sincetheamountofnumericaldatatobedecomposedintofrequencycomponentsisterriblyhuge(severaltensofGbytes)。

Atypicalexampleofthetime–frequencymapcreatedbytheaboveproceduresisshowninagrey-scalediagramasFig。5,whichshowsthevariationofperiodicityintheeccentricityandinclinationofEarthinN+2integration。InFig。5,thedarkareashowsthatatthetimeindicatedbythevalueontheabscissa,theperiodicityindicatedbytheordinateisstrongerthaninthelighterareaaroundit。WecanrecognizefromthismapthattheperiodicityoftheeccentricityandinclinationofEarthonlychangesslightlyovertheentireperiodcoveredbytheN+2integration。Thisnearlyregulartrendisqualitativelythesameinotherintegrationsandforotherplanets,althoughtypicalfrequenciesdifferplanetbyplanetandelementbyelement。

4。2Long-termexchangeoforbitalenergyandangularmomentum

Wecalculateverylong-periodicvariationandexchangeofplanetaryorbitalenergyandangularmomentumusingfilteredDelaunayelementsL,G,H。GandHareequivalenttotheplanetaryorbitalangularmomentumanditsverticalcomponentperunitmass。LisrelatedtotheplanetaryorbitalenergyEperunitmassasE=?μ22L2。Ifthesystemiscompletelylinear,theorbitalenergyandtheangularmomentumineachfrequencybinmustbeconstant。Non-linearityintheplanetarysystemcancauseanexchangeofenergyandangularmomentuminthefrequencydomain。Theamplitudeofthelowest-frequencyoscillationshouldincreaseifthesystemisunstableandbreaksdowngradually。However,suchasymptomofinstabilityisnotprominentinourlong-termintegrations。

InFig。7,thetotalorbitalenergyandangularmomentumofthefourinnerplanetsandallnineplanetsareshownforintegrationN+2。Theupperthreepanelsshowthelong-periodicvariationoftotalenergy(denotedasE-E0),totalangularmomentum(G-G0),andtheverticalcomponent(H-H0)oftheinnerfourplanetscalculatedfromthelow-passfilteredDelaunayelements。E0,G0,H0denotetheinitialvaluesofeachquantity。Theabsolutedifferencefromtheinitialvaluesisplottedinthepanels。ThelowerthreepanelsineachfigureshowE-E0,G-G0andH-H0ofthetotalofnineplanets。Thefluctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthemassivejovianplanets。

Comparingthevariationsofenergyandangularmomentumoftheinnerfourplanetsandallnineplanets,itisapparentthattheamplitudesofthoseoftheinnerplanetsaremuchsmallerthanthoseofallnineplanets:theamplitudesoftheouterfiveplanetsaremuchlargerthanthoseoftheinnerplanets。Thisdoesnotmeanthattheinnerterrestrialplanetarysubsystemismorestablethantheouterone:thisissimplyaresultoftherelativesmallnessofthemassesofthefourterrestrialplanetscomparedwiththoseoftheouterjovianplanets。Anotherthingwenoticeisthattheinnerplanetarysubsystemmaybecomeunstablemorerapidlythantheouteronebecauseofitsshorterorbitaltime-scales。Thiscanbeseeninthepanelsdenotedasinner4inFig。7wherethelonger-periodicandirregularoscillationsaremoreapparentthaninthepanelsdenotedastotal9。Actually,thefluctuationsintheinner4panelsaretoalargeextentasaresultoftheorbitalvariationoftheMercury。However,wecannotneglectthecontributionfromotherterrestrialplanets,aswewillseeinsubsequentsections。

4。4Long-termcouplingofseveralneighbouringplanetpairs

Letusseesomeindividualvariationsofplanetaryorbitalenergyandangularmomentumexpressedbythelow-passfilteredDelaunayelements。Figs10and11showlong-termevolutionoftheorbitalenergyofeachplanetandtheangularmomentuminN+1andN?2integrations。Wenoticethatsomeplanetsformapparentpairsintermsoforbitalenergyandangularmomentumexchange。Inparticular,VenusandEarthmakeatypicalpair。Inthefigures,theyshownegativecorrelationsinexchangeofenergyandpositivecorrelationsinexchangeofangularmomentum。Thenegativecorrelationinexchangeoforbitalenergymeansthatthetwoplanetsformacloseddynamicalsystemintermsoftheorbitalenergy。Thepositivecorrelationinexchangeofangularmomentummeansthatthetwoplanetsaresimultaneouslyundercertainlong-termperturbations。CandidatesforperturbersareJupiterandSaturn。AlsoinFig。11,wecanseethatMarsshowsapositivecorrelationintheangularmomentumvariationtotheVenus–Earthsystem。MercuryexhibitscertainnegativecorrelationsintheangularmomentumversustheVenus–Earthsystem,whichseemstobeareactioncausedbytheconservationofangularmomentumintheterrestrialplanetarysubsystem。

ItisnotclearatthemomentwhytheVenus–Earthpairexhibitsanegativecorrelationinenergyexchangeandapositivecorrelationinangularmomentumexchange。Wemaypossiblyexplainthisthroughobservingthegeneralfactthattherearenoseculartermsinplanetarysemimajoraxesuptosecond-orderperturbationtheories(cf。Brouwer&Clemence1961;Boccaletti&Pucacco1998)。Thismeansthattheplanetaryorbitalenergy(whichisdirectlyrelatedtothesemimajoraxisa)mightbemuchlessaffectedbyperturbingplanetsthanistheangularmomentumexchange(whichrelatestoe)。Hence,theeccentricitiesofVenusandEarthcanbedisturbedeasilybyJupiterandSaturn,whichresultsinapositivecorrelationintheangularmomentumexchange。Ontheotherhand,thesemimajoraxesofVenusandEartharelesslikelytobedisturbedbythejovianplanets。ThustheenergyexchangemaybelimitedonlywithintheVenus–Earthpair,whichresultsinanegativecorrelationintheexchangeoforbitalenergyinthepair。

Asfortheouterjovianplanetarysubsystem,Jupiter–SaturnandUranus–Neptuneseemtomakedynamicalpairs。However,thestrengthoftheircouplingisnotasstrongcomparedwiththatoftheVenus–Earthpair。

5±5×1010-yrintegrationsofouterplanetaryorbits

Sincethejovianplanetarymassesaremuchlargerthantheterrestrialplanetarymasses,wetreatthejovianplanetarysystemasanindependentplanetarysystemintermsofthestudyofitsdynamicalstability。Hence,weaddedacoupleoftrialintegrationsthatspan±5×1010yr,includingonlytheouterfiveplanets(thefourjovianplanetsplusPluto)。Theresultsexhibittherigorousstabilityoftheouterplanetarysystemoverthislongtime-span。Orbitalconfigurations(Fig。12),andvariationofeccentricitiesandinclinations(Fig。13)showthisverylong-termstabilityoftheouterfiveplanetsinboththetimeandthefrequencydomains。Althoughwedonotshowmapshere,thetypicalfrequencyoftheorbitaloscillationofPlutoandtheotherouterplanetsisalmostconstantduringtheseverylong-termintegrationperiods,whichisdemonstratedinthetime–frequencymapsonourwebpage。

Inthesetwointegrations,therelativenumericalerrorinthetotalenergywas~10?6andthatofthetotalangularmomentumwas~10?10。

5。1ResonancesintheNeptune–Plutosystem

Kinoshita&Nakai(1996)integratedtheouterfiveplanetaryorbitsover±5。5×109yr。TheyfoundthatfourmajorresonancesbetweenNeptuneandPlutoaremaintainedduringthewholeintegrationperiod,andthattheresonancesmaybethemaincausesofthestabilityoftheorbitofPluto。Themajorfourresonancesfoundinpreviousresearchareasfollows。Inthefollowingdescription,λdenotesthemeanlongitude,Ωisthelongitudeoftheascendingnodeand?isthelongitudeofperihelion。SubscriptsPandNdenotePlutoandNeptune。

MeanmotionresonancebetweenNeptuneandPluto(3:2)。Thecriticalargumentθ1=3λP?2λN??Plibratesaround180°withanamplitudeofabout80°andalibrationperiodofabout2×104yr。

TheargumentofperihelionofPlutoωP=θ2=?P?ΩPlibratesaround90°withaperiodofabout3。8×106yr。ThedominantperiodicvariationsoftheeccentricityandinclinationofPlutoaresynchronizedwiththelibrationofitsargumentofperihelion。ThisisanticipatedinthesecularperturbationtheoryconstructedbyKozai(1962)。

ThelongitudeofthenodeofPlutoreferredtothelongitudeofthenodeofNeptune,θ3=ΩP?ΩN,circulatesandtheperiodofthiscirculationisequaltotheperiodofθ2libration。Whenθ3becomeszero,i。e。thelongitudesofascendingnodesofNeptuneandPlutooverlap,theinclinationofPlutobecomesmaximum,theeccentricitybecomesminimumandtheargumentofperihelionbecomes90°。Whenθ3becomes180°,theinclinationofPlutobecomesminimum,theeccentricitybecomesmaximumandtheargumentofperihelionbecomes90°again。Williams&Benson(1971)anticipatedthistypeofresonance,laterconfirmedbyMilani,Nobili&Carpino(1989)。

Anargumentθ4=?P??N+3(ΩP?ΩN)libratesaround180°withalongperiod,~5。7×108yr。

Inournumericalintegrations,theresonances(i)–(iii)arewellmaintained,andvariationofthecriticalargumentsθ1,θ2,θ3remainsimilarduringthewholeintegrationperiod(Figs14–16)。However,thefourthresonance(iv)appearstobedifferent:thecriticalargumentθ4alternateslibrationandcirculationovera1010-yrtime-scale(Fig。17)。ThisisaninterestingfactthatKinoshita&Nakais(1995,1996)shorterintegrationswerenotabletodisclose。

6Discussion

Whatkindofdynamicalmechanismmaintainsthislong-termstabilityoftheplanetarysystem?Wecanimmediatelythinkoftwomajorfeaturesthatmayberesponsibleforthelong-termstability。First,thereseemtobenosignificantlower-orderresonances(meanmotionandsecular)betweenanypairamongthenineplanets。JupiterandSaturnareclosetoa5:2meanmotionresonance(thefamous‘greatinequality’),butnotjustintheresonancezone。Higher-orderresonancesmaycausethechaoticnatureoftheplanetarydynamicalmotion,buttheyarenotsostrongastodestroythestableplanetarymotionwithinthelifetimeoftherealSolarsystem。Thesecondfeature,whichwethinkismoreimportantforthelong-termstabilityofourplanetarysystem,isthedifferenceindynamicaldistancebetweenterrestrialandjovianplanetarysubsystems(Ito&Tanikawa1999,2001)。WhenwemeasureplanetaryseparationsbythemutualHillradii(R_),separationsamongterrestrialplanetsaregreaterthan26RH,whereasthoseamongjovianplanetsarelessthan14RH。Thisdifferenceisdirectlyrelatedtothedifferencebetweendynamicalfeaturesofterrestrialandjovianplanets。Terrestrialplanetshavesmallermasses,shorterorbitalperiodsandwiderdynamicalseparation。Theyarestronglyperturbedbyjovianplanetsthathavelargermasses,longerorbitalperiodsandnarrowerdynamicalseparation。Jovianplanetsarenotperturbedbyanyothermassivebodies。

Thepresentterrestrialplanetarysystemisstillbeingdisturbedbythemassivejovianplanets。However,thewideseparationandmutualinteractionamongtheterrestrialplanetsrendersthedisturbanceineffective;thedegreeofdisturbancebyjovianplanetsisO(eJ)(orderofmagnitudeoftheeccentricityofJupiter),sincethedisturbancecausedbyjovianplanetsisaforcedoscillationhavinganamplitudeofO(eJ)。Heighteningofeccentricity,forexampleO(eJ)~0。05,isfarfromsufficienttoprovokeinstabilityintheterrestrialplanetshavingsuchawideseparationas26RH。Thusweassumethatthepresentwidedynamicalseparationamongterrestrialplanets(>26RH)isprobablyoneofthemostsignificantconditionsformaintainingthestabilityoftheplanetarysystemovera109-yrtime-span。Ourdetailedanalysisoftherelationshipbetweendynamicaldistancebetweenplanetsandtheinstabilitytime-scaleofSolarsystemplanetarymotionisnowon-going。

AlthoughournumericalintegrationsspanthelifetimeoftheSolarsystem,thenumberofintegrationsisfarfromsufficienttofilltheinitialphasespace。Itisnecessarytoperformmoreandmorenumericalintegrationstoconfirmandexamineindetailthelong-termstabilityofourplanetarydynamics。

——以上文段引自Ito,T。&Tanikawa,K。Long-termintegrationsandstabilityofplanetaryorbitsinourSolarSystem。Mon。Not。R。Astron。Soc。336,483–500(2002)

这只是作者君参考的一篇文章,关于太阳系的稳定性。

还有其他论文,不过也都是英文的,相关课题的中文文献很少,那些论文下载一篇要九美元(《Nature》真是暴利),作者君写这篇文章的时候已经回家,不在检测中心,所以没有数据库的使用权,下不起,就不贴上来了。

热门小说推荐
斗罗大陆III龙王传说

斗罗大陆III龙王传说

伴随着魂导科技的进步,斗罗大陆上的人类征服了海洋,又发现了两片大陆。魂兽也随着人类魂师的猎杀无度走向灭亡,沉睡无数年的魂兽之王在星斗大森林最后的净土苏醒,...

每天被迫和大佬谈恋爱

每天被迫和大佬谈恋爱

爽文宠文,1v1,女强男强!初相见,薛夕被迫对这个充满危险的男人一见钟情,不谈恋爱会死的她只能主动出击我有钱,也很能打。做我男朋友,我罩着你...

环球挖土党

环球挖土党

斯摩棱斯克战役库尔斯克会战斯大林格勒战役北非战场太平洋战场神秘的南北极二战过去了半个多世纪,但曾经的战场上仍活跃着一批追寻历史真相与战争宝藏的挖土党。...

独宠朝夕:老婆要抱抱

独宠朝夕:老婆要抱抱

黑暗中,她为救他,成了他的女人,他却在隔天清晨匆匆离去。六年后,她进入他的公司,与他擦肩而过,互不相识,但一切展开黑暗中,她为救他,成了他的女人,他却在隔天清晨匆匆离去。六年后,她进入他的公司,与他擦肩而过,互不相识,但一切已悄然发生改变。单纯的妈妈,腹黑的萌娃,当她们遇上他,一段令人啼笑皆非的旅程就此开始。...

谁来治治他

谁来治治他

自从他出道以来,衍生了一个世界性的难题这小子太猛了,谁来治治他?交流群见书友圈置顶帖。...